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Abstract

When heat shocked, plant cells distribute their energy to make a very
different set of proteins than when at normal temperatures. Along with
other secretory proteins, α-amylase is particularly affected by heat shock.
This protein is responsible for digesting the starchy food stores contained
in the endosperm of a barley seed. These starchy nutrients comprise the
largest part of the food store that allows the seed to germinate. When
barley is heat shocked, the cells′ production of α-amylase and other se-
cretory proteins is largely reduced and a set of heat shock proteins that
repair damaged proteins is produced. This change in protein synthesis is
the result of selective destabilization of the mRNAs encoding α-amylase
and other secretory proteins. In addition, the endoplasmic reticulum (ER)
upon which these secretory protein mRNAs are translated into proteins
undergoes major structural and compositional changes. The purpose of
this project is to create and test a mathematical model to analyze how
these elements interact to influence α-amylase production while the cell
is under heat stress. Our current model and simulations are able to cap-
ture the impact of different temperature regimes and levels of fluidity
on α-amylase synthesis and are in good qualitative agreement with the
experimental data.
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1 Motivation

My motivation for choosing this particular project stems from my participa-
tion in the Integrated Research in Biomathematics program this past summer.
When the research term ended, our team had developed a preliminary model
and system of differential equations. We had also been able to perform some
numerical analysis using Matlab and obtained a rough solution of total con-
centrations of α-amylase. With more time, we wanted to be able to refine our
model, introduce a new variable of membrane fluidity, and obtain a new solution
that matched the literature more accurately. By combining this project with my
senior project, I have been able to continue working on the project throughout
the Fall 2012 semester and achieve many of our goals.

I find this project so interesting because of the practical applications that
our research could have one day. Understanding how plants react to high tem-
perature stress, and what the process of protein synthesis looks like under those
conditions will be critical to address environmental changes imposed by climate
change. This project has allowed me to experience one way that mathematics
can play a crucial and practical role in solving the world’s problems. It has also
introduced me to biomathematics, which I am hoping to pursue in graduate
school.

2 Introduction

We live in a world of constant climate change. Human beings have means of
adjusting to changing temperatures. We can remove or add clothing, change
location, or turn on our heat or air conditioning. Plants are not so fortunate.
Once they have been placed in the ground, they must deal with the temperature
conditions presented to them without mobility. One of the ways that plants can
adapt to temperature extremes is to alter the proteins that they are producing
[3]. During this paper, we will focus our studies on barley plants.

Under normal temperature conditions, a barley seed will intake water, trig-
gering the release of gibberellic acid (GA) from the embryo into the aleurone
layer. The aleurone layer houses the digestive proteins, including α-amylase,
necessary to provide nutrients to the embryo. The insertion of GA triggers the
release of these proteins into the endosperm, where all of the plants nutrients
are stored. These proteins digest the nutrients and transform them into a form
that the embryo can use as food. When the embryo receives these nutrients,
it germinates and sends a shoot up out of the ground [3]. See Figure 1 for a
diagram of the germination process.
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Figure 1: The process of germination for a barley seed [4].

When heat shocked, plant cells reallocate their energy to make different pro-
teins than when at regular temperatures [3]. Along with other secretory pro-
teins, α-amylase is particularly affected by heat shock. This protein is responsi-
ble for digesting the starchy food stores contained in the endosperm of a barley
seed. These starchy nutrients comprise the largest part of the food store that
allows the seed to germinate. When barley is heat shocked, the cells′ production
of α-amylase and other secretory proteins is largely reduced and a set of heat
shock proteins that repair damaged proteins is produced [16]. This change in
protein synthesis is the result of selective destabilization of the mRNAs encoding
α-amylase and other secretory proteins. In addition, the endoplasmic reticulum
(ER) upon which these secretory protein mRNAs are translated into proteins
undergoes major structural and compositional changes [2, 5].

The purpose of this project is to create a mathematical model to analyze how
these elements interact to influence α-amylase production while barley aleurone
cells are under heat stress. Our model was created using the mass-action prin-
ciple to transform biological reactions into differential equations. We then fit
the model with our experimental data which measure protein concentrations at
three different temperature schemes (plunge, slow and fast ramps). The com-
putational simulations show good qualitative agreement with the literature and
experimental data. α-amylase is most severely affected by the plunge tempera-
ture scheme, but is not as drastically decreased in the slow ramp since the cells
have enough time to adapt to the temperature stimulus [10].

Over the summer, we created the model and formed the original system of
differential equations. We ran a preliminary analysis of the model, and com-
pared the results to literature on the topic. This semester, we explored the
concept of fluidity in the endoplasmic reticulum, and how it affects the synthe-
sis of α-amylase. We gathered data on the two measurements of fluidity that
we have, and created fitting functions for both types of data. We introduced
these functions into our system of equations and reran our simulations. We also
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normalized the data that we quantified over the summer in order to see if we
could get the range of values to fall within the norms seen in literature reviews.

3 α-amylase Model Formation

We began our model formation by first obtaining an accurate schematic diagram
of the process of α-amylase synthesis (see Figure 2). Then we assigned each
reactant to a variable and used Figure 2 to write reaction equations for each
step in the process.

Figure 2: A schematic diagram illustrating the synthesis of α-amylase.

x1 : α-amylase mRNA (mRNA)

x2 : SRP

x3 : Ribosomes (R)

x4 : Endoplasmic Reticulum (ER)

x5 : α-amylase (α-A)

x6 : [mRNA · SRP · R]

x7 : [ER ·mRNA · R]

x8 : [ER ·mRNA · SRP · R]

x9 : [ER · SRP]

Next we took each step of the synthesis reaction, translated the reactants into
variables, and wrote reaction equations.
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1. First, a signal recognition particle (SRP) joins with a ribosome and mRNA
to form one complex.

This first reaction is reversible and so is written as this reaction equation:

x1 + x2 + x3
k1

�l1 x6.

2. Then the SRP transports this complex to the ER, where it attaches.

x6 + x4
k2−→ x8.

3. Next, the SRP disassociates, leaving the ribosome and mRNA attached
to the ER.

x8
k3−→ x7 + x2.

4. The signal tail of the α-amylase protein is inserted into the ER through
a pore. The ribosome translates the rest of the mRNA strand into a full α-
amylase protein. The mRNA and ribosome then disassociate and are free to
begin the process again.
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x7
k4−→ x4 + x1 + x3 + x5.

5. When heat shock occurs, there is a stall in the process of α-amylase syn-
thesis. Steps 1 and 2 occur as normal, but instead of step 3, the SRP remains
attached to the complex and the ER, and does not allow the ribosome to con-
tinue translation of the mRNA. The ribosome goes free, mRNA is degraded
or detached, and the SRP remains stuck to the ER. No α-amylase protein is
produced.

x8
k5−→ x9 + x3 + x1.

6. While stuck on the ER, the mRNA is vulnerable to degradation by
RNAses.

x1
l2
99K degraded x1.

7. There is also a natural degradation process for mRNA. mRNa has a nat-
ural half life of 100 hours.

x1
l3
99K degraded x1.
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3.1 Mass-Action Law

In order to use these reaction equations to get a system of differential equations,
we used the principle of mass action [14]. The principle of mass action states
that the rate of each reaction is proportional to the concentration of reactants.

Take the second reaction equation from above for example, x6 + x4
k2−→ x8.

The concentrations of x6 and x4 are begin decreased at a rate of k2, while
the concentration of x8 is being increased at the same rate. We write dx6

dt =
dx4

dt = −k2x6(t)x4(t), and dx8

dt = k2x6(t)x4(t). For a reversible reaction such as

reaction one, x1 +x2 +x3
k1

�l1 x6, we use a similar method. This time there are
two rates to take into consideration. k1 is the rate at which the concentrations
of the reactants are changing with respect to the concentrations of x1, x2, and
x3 at time t. l1 is the rate at which the concentrations of the reactants are
changing with respect to the concentration of x6 at time t. We obtain dx1

dt =
dx2

dt = dx3

dt = −k1x1(t)x2(t)x3(t)+l1x6(t), and dx6

dt = k1x1(t)x2(t)x3(t)−l1x6(t).
We perform this process for every rate equation and then sum all terms that
contain each reactant to get a final differential equation for each reactant.

3.2 System of Differential Equations

The final differential equations for each reactant are detailed below. The first
equation describes the rate of change for α-amylase mRNA. The rate of change of
mRNA is influenced by the association and disassociation of the [mRNA·SRP·R]
complex, the final production of the α-amylase protein, the disassociation of
the elements after the synthesis stalls in step 5, the degradation of mRNA by
RNAses, and the natural degradation of mRNA.

dx1
dt

= −k1x1x2x3 + l1x6 + k4x7 + k5x8 − l2x1 − l3x1.

The second equation describes the rate of change for SRP. The rate of change of
SRP is influenced by the association and disassociation of the [mRNA·SRP·R]
complex, and the expected disassociation of the SRP molecule during normal
synthesis in step 3.

dx2
dt

= −k1x1x2x3 + l1x6 + k3x8.

The third describes the rate of change for ribosomes. The rate of change of the
concentration of ribosomes is influenced by the association and disassociation
of the [mRNA·SRP·R] complex, the final production of the α-amylase protein,
and the disassociation of the elements after the synthesis stalls in step 5.

dx3
dt

= −k1x1x2x3 + l1x6 + k4x7 + k5x8
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The fourth describes the rate of change for the ER. The rate of change of the
endoplasmic reticulum is influenced by the attachment of the [mRNA·SRP·R]
complex to the ER, and the final production of the α-amylase protein.

dx4
dt

= −k2x6x4 + k4x7

The fifth describes the rate of change for α-amylase, which is influenced by the
final production of the protein.

dx5
dt

= k4x7

The sixth describes the rate of change for the [mRNA·SRP·R] complex. The rate
of change for this complex is influenced by the association and disassociation
of the [mRNA·SRP·R] complex, and the attachment of the [mRNA·SRP·R]
complex to the ER.

dx6
dt

= −l1x6 + k1x1x2x3 − k2x6x4

The seventh describes the rate of change for the [ER·mRNA·R] complex. The
rate of change for this complex is influenced by the expected disassociation of
the SRP molecule during normal synthesis in step 3, and the final production
of the α-amylase protein.

dx7
dt

= k3x8 − k4x7

The eighth equation describes the rate of change for the [ER·mRNA·SRP·R]
complex. The rate of change of this complex is influenced by the attachment of
the [mRNA·SRP·R] complex to the ER, the expected disassociation of the SRP
molecule during normal synthesis in step 3, the disassociation of the elements
after the synthesis stalls in step 5, the changing temperature, denoted by the
temperature function F (T ), and the change in the fluidity of the endoplasmic
reticulum, denoted by Fr(T ) and Ff(T ). Fr(T ) accounts for the change in the
ratio of fatty acids, and Ff(T ) accounts for the change in fluidity measured by
fluorescence polarization. These quantities will be described in more detail in a
later section. These functions for temperature and fluidity are included in the
differential equation for [ER·mRNA·SRP·R] complex because temperature and
fluidity influence whether step number 3 or step number 5 occur. This influences
how large the terms in the eighth equation are.

dx8
dt

= k2x6x4 − k3x8 − k5x8 + F (T ) + Fr(T ) + Ff(T )

Finally, the ninth describes the rate of change for the [ER·SRP] complex, which
is influenced by the disassociation of the elements after the synthesis stalls in
step 5.

dx9
dt

= k5x8
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3.3 Fourth-order Runge-Kutta method

Given a system of ordinary differential equations (ODEs), we can find a solu-
tion either numerically or analytically. When systems are large and complex,
numerical methods must be used to obtain approximate solutions to the systems
since the analytical techniques are not powerful enough.

The fourth-order Runge-Kutta method (RK4) is a 4-step numerical method
used in Matlab ode45 to solve a system of ODEs. It is used because it provides
a higher order of accuracy while balancing computation time.

We begin with an initial value problem: y′ = f(t,y), y(to) = yo.

The RK4 method is:

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4),

tn+1 = tn + h,
k1 = hf(tn,yn),
k2 = hf(tn + 1

2h,yn + 1
2k1),

k3 = hf(tn + 1
2h,yn + 1

2k2),
k4 = hf(tn + h,yn + k3),

where h is the time step and yn+1 is an approximation of y(tn+1). The RK4
method has an error of order h5 per step, and a total error of order h4 [17].

3.3.1 Derivation

There is more than one way to derive the algorithm for RK4. I chose to follow
the method of Jason Frank, a lecturer at the University of Amsterdam in the
Netherlands [8]. His method requires understanding collocation methods, so I
will present the explanation of how to use this method to approximate a solution
to an ODE. Our goal is to find an approximation to the solution of

u′(t) = f(u(t)), u(to) = yo, t ∈ [to, to + T ]. (1)

First we begin with some definitions that are necessary to understand this
method.

Definition 1. Ordinary differential equations (ODEs) are equations that involve
a function and its derivatives.

Definition 2. A collocation method is a method used to numerically solve or-
dinary differential equations (ODEs), partial differential equations, and integral
equations.

Definition 3. The interpolating polynomial P (x) ∈ Ps−1 is the unique polyno-
mial that satisfies P (ci) = gi, i = 1, ..., s, where ci are the s distinct points and
gi are the corresponding data.
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Figure 3: A collocation polynomial of degree three [12].

Definition 4. The Lagrange interpolating polynomials `i, i = 1, ..., s, for a set
of s points are defined by

`i(x) =
s∏

j=1
j 6=i

(
x−cj
ci−cj ).

The interpolating polynomial for a function g(x) is then given by P (x) =
s∑

i=1

gi`i(x). We can then use the idea of collocation to construct a one-step

method of given order of accuracy. We construct this method for the first time
step interval [to, to + h].

Let 0 ≤ c1 ≤ c2 ≤ ... ≤ cs ≤ 1 be distinct nodes. The collocation polyno-
mial u(t) ∈ Rd is a vector-valued polynomial of degree s satisfying the following:

u(to) = yo

u′(to + cih) = f(u(to + cih)), i = 1, ..., s
(2)

The numerical solution of the collocation method is given by y1 = u(to + h).
In other words, we construct a polynomial that passes through yo and matches
equation (1) at s nodes on [to, t1]. The numerical solution is then the value of
this polynomial at time t1. See Figure 3 for an example of such a polynomial.
This method can be generalized to get the RK4 method using the following
theorem.
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Theorem 1. The collocation method for c1, ..., cs is equivalent to the s-stage
Runge-Kutta method with coefficients

aij =

ci∫
0

`j(x)dx, bi =

1∫
0

`i(x)dx, i, j = 1, ..., s,

where `i(x) is the Lagrange polynomial. Moreover:

Fi = f(yn + h

s∑
j=1

Fjaij),

yn+1 = yn + h

s∑
j=1

Fjbj , i, j = 1, ...s.

Proof : Consider an ordinary differential equation u′, such that u′(to+cih) =
f(u(to + cih)), with initial condition u(to) = yo, where the solution is y1 =
u(to + h). Define Fi to be the unknown values of our interpolating polynomial
at the s nodes. Then Fi = u′(to + cih), i = 1, ..., s. We emphasize that the
values of Fi are the derivatives of the collocation polynomial, u. Now we use

the formula for P (x) that we defined earlier (P (x) =
s∑

i=1

gi`i(x)), along with a

change of variable (let t = to +xh), to approximate u′(t) with our interpolating
polynomial. Then,

u′(t) =

s∑
i=1

Fi`i

(
t− to
h

)
. (3)

Integrate over the interval from 0 to ci (considering our variable change):

to+cih∫
to

u′(t)dt = h

ci∫
0

s∑
j=1

Fj`j(x)dx

⇒ u(to + cih)− u(to) = h
s∑

j=1

Fj

ci∫
0

`j(x)dx

⇒ u(to + cih) = yo + h
s∑

j=1

Fjaij .

Recall that u′(to + cih) = f(u(to + cih)). So,

u′(to + cih) = Fi = f(yo + h

s∑
j=1

Fjaij), i, j = 1, ..., s. (4)

So, we have derived a useful formula for u′(to+cih) by using the interpolating
polynomial. Now, we also need to derive y1 = u(to + h). So we integrate
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u′(to + xh) over the interval [0, 1]:

1∫
0

u′(to + xh)dx = h

1∫
0

s∑
j=1

Fj`j(x)dx

⇒

u(to + h)− u(to) = h

s∑
j=1

Fj

1∫
0

`j(x)dx

⇒

u(to + h) = yo + h

s∑
j=1

Fjbj

So, y1 = u(to + h) = yo + h
s∑

j=1

Fjbj is our approximation of the solution to

the ODE u′(to + cih) = f(u(to + cih)). We can now generalize these derivations
to get a general form for yn and yn+1.

⇒

Fi = f(yn + h

s∑
j=1

Fjaij),

and

yn+1 = yn + h

s∑
j=1

Fjbj , i, j = 1, ...s.

We can generalize this method to get the four-stage Runge-Kutta method by
allowing c1 = 0, c2 = 1

2 , c3 = 1
2 , and c4 = 1. Then we introduce an alternative

form of stage values Yi, which can be defined as intermediate values of y at time

tn + cih. Let Yi = yn + h
s∑

j=1

aijFj .

Definition 5. Refer to Theorem 1 and define Fj = f(Yj). Then

Yi = yn + h

s∑
j=1

aijf(Yj), i = 1, ..., s,

yn+1 = yn + h

s∑
i=1

bif(Yi).

We can then write Runge-Kutta four as the following:

Y1 = yn,
Y2 = yn + h

2 f(Y1),
Y3 = yn + h

2 f(Y2),
Y4 = yn + hf(Y3),
yn+1 = yn + h( 1

6f(Y1) + 1
3f(Y2) + 1

3f(Y3) + 1
6f(Y4).
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With a little bit of manipulation, we can see that this method of writing RK4
is equivalent to the method we began with at the start of this section. This
method was understood based on lecture notes by Dr. Jason Frank [8].

4 Numerical Analysis

This section will describe the numerical analysis we performed on the system of
nine differential equations presented earlier. We used MATLAB solver ode45,
which uses the fourth-order Runge-Kutta method described previously, to per-
form our simulations.

4.1 Fitting Functions

First of all, we must define the F (T ), Fr(T ), and Ff(T ) functions that are
present in the eighth differential equation. The F (T ) function makes it possible
for us to include a temperature variable in our model. F (T ) describes how
α-amylase synthesis responds to changes in temperature. For this project, we
used data collected by Dr. Brodl and his students over the past twenty years.
The data was recorded from barley aleurone layers treated in three types of
temperature schemes [10].

We will call the first temperature scheme the plunge. During the plunge,
barley aleurone layers were maintained in a 25◦C water bath for three hours,
and then plunged straight into a 40◦C water bath. The barley aleurone layers
were maintained at 40◦C for three hours. Measurements were taken on the hour
every hour, and every measurement recorded the amount of α-amylase produced
in the previous half-hour.

The second temperature scheme will be called the fast ramp. During this
scheme, barley aleurone layers also began in a 25◦C water bath for three hours.
The temperature of the water bath was then increased by 2.5◦C every half hour
until it reached 40◦C. Measurements were taken at 0, 1, 2, 3, 4.5, 5, 5.5, and
6 hours, again measuring the amount of α-amylase produced in the previous
half-hour.

We will call the final temperature scheme the slow ramp. During the slow
ramp, barley aleurone layers once again began in a 25◦C water bath. The
temperature of the water bath was increased by 2.5◦C every hour until it reached
40◦C. Measurements were taken every hour on the hour for the last four hours
of treatment. Figure 4 gives a good example of the fast and slow ramp time
schemes. The six hours described above would go from 13 to 19 hours on this
graph.

In order to get a function for F (T ), we had to fit one to the data that we
compiled for α-amylase synthesis since there was no known temperature function
for α-amylase. We began by using a simple third degree polynomial fit (see
Figure 5).
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Figure 4: Example diagram of the fast and slow ramp time schemes [10].

Figure 5: Original fitting functions for the three time schemes of α-amylase.

Because we are missing data for the first hours of the slow ramp time scheme,
the polynomial fitting could create too much extrapolation for those first hours.
We decided to use a piecewise linear fit instead, in order to get the most accurate
function with the data that we had (see Figure 6).

4.2 Fluidity

Fr(T ), and Ff(T ) make it possible for us to include a fluidity variable in our
model. How does fluidity influence synthesis of α-amylase? Fluidity refers to the
fluidity of the endoplasmic reticulum (ER). The ER is composed of fatty acids
that become more fluid when temperature is increased. This fluidity changes
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Figure 6: Revised fitting function for the three time schemes of α-amylase.

the structure of the ER and affects the functioning of a very important pore.
During the process of α-amylase synthesis, the mRNA inserts its tail through
a pore in the membrane into the ER, where the actual synthesis of α-amylase
takes place. When the fluidity is altered, these pores cease to function properly
and α-amylase cannot be produced inside of the ER. This stalls the synthesis
process [9].

There are two measures of fluidity that we have data for: fatty acid ratios,
and fluorescence polarization. Fatty acid ratios measure the ratio of saturated to
unsaturated fatty acids in the endoplasmic reticulum. Fluorescence polarization
measures the fluidity of the membrane by recording how much light is able to
reflect back to the source. With each of these measurements, we only have
data from the beginning and end points of our time intervals. Because of these
limited data points, we had to use a strictly linear fitting approach where we
associated the variable, fatty acid ratio or fluorescence polarization, with rates
of α-amylase synthesis at those times. Below are the two fitting functions that
we derived from this process for the plunge time scheme. Table 1 illustrates
the data that we used in order to derive the functions. Fr(T ) describes the
way that the rate of α-amylase synthesis changes with respect to the fatty acid
ratio. Ff(T ) describes the way that the rate of α-amylase synthesis changes
with respect to the fluorescence polarization data. See Figure 7 for a graphical
representation of these functions.

Fluidity: Ff = (.173-.201)/(.1324-.2466)*(F-.2466)+.201;

Ratio: Fr = ((.88-.56)/(.1324-.2466)*(F-.2466)+.56;
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Temperature (C) Fluorescence α-amylase Ratio of fatty acids
25 .201 .2466 .56
40 .173 .1324 .88

Table 1: Fluidity data for the plunge time scheme.

Figure 7: A graphical representation of Ff and Fr.

4.3 Parameters and Initial Values

We could not find reliable measurements of our parameters or steady state values
of our reactants in the literature, so we made our best approximations of these
values according to a range of sources[6, 15, 13, 1, 7, 11]. We obtained some
values from literature, and we calculated some values based on relations and
other known quantities. The results reported in the next section are based on
the initial values of the variables (Table 2) and parameters (Table 3).

Variable Description Value (mol
L )

x1 α-amylase mRNA 8.7580 ∗ 10−09

x2 SRP 2.2740 ∗ 10−10

x3 Ribosomes 4.5495 ∗ 10−08

x4 Endoplasmic Reticulum 3.8813 ∗ 10−08

x5 α-amylase 5.8120 ∗ 10−07

x6 [mRNA · SRP · R] 8.7580 ∗ 10−11

x7 [ER · mRNA · R] 8.7580 ∗ 10−11

x8 [ER · mRNA · SRP · R] 8.7580 ∗ 10−12

x9 [ER · SRP] 0

Table 2: Steady State Concentrations of Variables
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Parameter Description Value

k1 rate of ribosome binding to mRNA 2.0790 ∗ 10−09

k2 rate of x6 binding to ER 3.3333 ∗ 10−08

k3 rate of successful SRP detachment from ER 4.1579 ∗ 10−07

k4 rate of alpha amylase synthesis 2.0790 ∗ 10−07

k5 rate of SRP remaining stuck to ER 4.1579 ∗ 10−09

l1 rate of [mRNA · SRP · R] decomposition 2.0790 ∗ 10−12

l2 rate of heat-shock induced mRNA degradation 7.7017 ∗ 10−04

l3 rate of natural mRNA degradation 1.9167 ∗ 10−06

Table 3: Estimated model parameters; units for parameters are (s)−1(mol
L )−n+1,

where n is the number of variables in the term containing the parameter.

4.4 Simulation Results

Over the summer research term, we obtained preliminary results for our sim-
ulation. These results were promising in that the general trend of the total
concentrations for α-amylase matched what we expected from the literature
(see Figure 8). Johnston et al [10] documented in their experiments that slow
ramp samples experienced little to no suppression of α-amylase production,
while fast ramp samples fell below normal production for about an hour before
recovering. These two samples were in stark contrast to the plunge samples,
which took eighteen hours to recover to normal production. In our simulations,
α-amylase was most severely affected by the plunge temperature scheme. In
the slow ramp experiment, the barley aleurone layer cells had enough time to
adapt so that amylase synthesis was not as drastically decreased. Finally, the
fast ramp samples performed less normally than the slow ramp but much better
than the plunge.

After we added the fluidity functions to our system of differential equations,
we obtained the total concentrations found in Figures 9 and 10. The revised
solutions to the system of ODEs gives us two more characteristics that lines up
with our expectations. According to Dr. Mark Brodl, the total concentration
for the fast ramp at 6 hours of simulation should be about 2/3 of the way up
from the plunge to the slow ramp. In addition, the total concentration of α-
amylase after six hours of the plunge time scheme should be about 0.005 mol

L−1 .
As we can see in Figure 10, our final concentrations follow very closely to these
trends.

5 Conclusion

In this paper, we have explained the process of α-amylase synthesis under nor-
mal and heat-shocked conditions. We have used the principle of mass action
to transform a series of reaction equations into differential equations. We have
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Figure 8: Total concentrations of α-amylase without fluidity.

Figure 9: Revised total concentrations of α-amylase with fluidity data included.

derived a system of nine differential equations to model α-amylase synthesis,
while taking into account both temperature and ER membrane fluidity.

We were able to achieve total concentrations with our simulations that have
similar characteristics with information given by Dr. Brodl and with experi-
mental data found in Johnston et al [10]. Future work on this project will be
to continue to revise the system of differential equations to obtain simulation
results that match even more closely with the expected behavior of α-amylase
synthesis according to the literature. We would also like to compare our sim-
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Figure 10: Zoom view of scale of final concentrations of α-amylase after six
hours of simulation.

ulated plot for mRNA with data given to us by Dr. Mark Brodl in order to
further validate our model. Once we have a more solid model, we would like
to do sensitivity analysis to figure out which parameters are most sensitive to
change.
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