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INTRODUCTION: GOALS OF THE PROJECT 

Our group comprised of three members, Valeri Alexiev, Jeanna Balreira, and Vanessa Moreno, worked 

on the semester-long project, Analyzing the structures and dynamics of protein/lipid interactions in Lipid 

Nanodomains using a deterministic centroid Voronoi tessellation method, under the guidance of project 

mentors Dr. Hoa Nguyen and Dr. Kelvin Cheng. Our goal was to develop a Voronoi tessellation [VT] 

method to calculate the distributions and kinetics of the surface area, volume, and void spaces of lipid and 

protein groups. The motivation behind our goal is to help develop a method to better calculate surface 

area, volume, and voids of biological molecules that are important to in characterizing the protein 

misfolding and aggregation on cell membranes (Cheng). 

 

Our group utilized the imaging and analysis software Voro++, VMD, and Voroprot. Valeri focused on 

understanding, using, and extending Voroprot. This report will describe Jeanna and Vanessa’s focus on 

the data mining and statistical analysis of the output of Voro++ and applying the output into VMD for 

visualizations.  

 

 

  



METHODS: VT THEORY AND 2D PICTURES TO ILLUSTRATE TYPES OF VT’S  

The first stage of our project was dedicated to research. The first struggle we encountered was lack of 

strong biology and chemistry backgrounds. In order to accomplish our goal, we need to first understand it. 

Using the Internet and related published articles and papers we sought information about the structures 

(proteins, misfolding, lipids, etc.) we were modeling and analyzing. We learned proteins are biological 

molecules made from chains of amino acids whose vast amount of functions include the replication of 

DNA, catalyzation of metabolic reactions, and transportation of molecules from one location to another. 

The folding of a protein is a specific three-dimensional structure that determines the activity of the 

protein. Thus, the misfolding of a protein can lead to toxic functionality of the protein. 

 

Alzheimers disease [AD] is considered a protein misfolding disease (Poirier and Ross).  AD is linked to 

the accumulation of beta-amyloid deposits, a misfolding of a protein that builds plaque on the cell 

membrane. AD is the disease the team of faculty leading this research focuses on. As stated earlier, the 

calculations of surface area, volume, and voids of molecules help characterize protein misfolding and 

aggregation on the cell membrane. The methods traditionally used to calculate these parameters are based 

on assumptions of the volume of molecules, estimations of the surface area, and a disregard for voids. 

Annular lipids surround and embed the protein, this makes for many errors in the calculation of the 

parameters. We believe a VT method will more accurately calculate the distributions and kinetics of these 

parameters in a protein (Cheng). 

 

Our next step was to understand VT theory as well as the types of VTs we would be working with. After 

searching through the code, we found that Voroprot creates tessellations using the additively weighted VT 

method and Voro ++ uses the power VT method, sometimes referred to as radical VT method. We will 

now provide definitions and examples of the VTs used.  

 

Definition: Voronoi Tessellation / Voronoi Diagram 

Given a plane with N points, and a set of generating points, we partition the plane into convex 

polygons such that each polygon contains exactly one generating point and every point in a given 

polygon is closer to its generation point that to any other (Wolframalpha).  

 

Definition: Euclidian VT 

Given a plane with N points, and a set of generating points, we partition the plane into convex 

polygons such that each polygon contains exactly one generating point and every point in a given 



polygon is closer to its generating point than to any other. Here, “closer” is determined by the 

smallest Euclidian distance from one point to any of the generating points (Wolframalpha).  

 

Definition: Power VT (Also referred to as Radical VT) 

D (pi, wi; p) = [ || p-pi || 2 ] – wi2 

Given a set of circles, with the center located at pi and a radius of wi, we create a partition of the 

plane into cells by assigning a point, p, to the region of pi;wi for which the power distance to 

pi;wi is smaller than the power distance of any other generator. Here, pi;wi are generators and p 

is any point on the plane.  

 

 

Definition: Additively Weighted VT 

D (pi, wi; p) = [ || p-pi || ] –wi 

Given a set of circles, with the center located at pi and a radius of wi, we create a partition of the 

plane into cells by assigning a point, p, to the region of pi;wi for which the additively weighted 

distance to pi;wi is smaller than the additively weighted distance of any other circle. Here, pi;wi 

are generators and p is any point on the plane.  

 

 

To further understand the VT methods used in Voroprot and in Voro++, we created a small-scale Voronoi 

tessellation algorithm in a two-dimensional plane with two generators. We let the generators be points 

p1=(0.25, 0.25) with radius w1=0.25 and p2=(0.75, 0.75) with radius w2=0.5. With our domain 

on the Cartesian coordinate system and both our x- and y-axes ranging from 0 to 1.5 with increments of 

.01 units, we used meshgrid in MATLAB to create our plot. Our input is the x and y coordinate position 

of the center of p1 and p2 and the radius, or weight, of each point. Our points p1 and p2 then respectively 

become circles where C1 = 2πw1 and C2 = 2πw2. Using a loop, our script runs through all the points 

in the meshgrid and calculates the meshgrid’s point’s power distance from C1 and C2. If a point’s power 

distance to C1 is less than the power distance to C2, then that point is assigned to the region of p1, and 

vice versa. If there is a case where the power distance to C1 equals the power distance to C2, then the 

point lies in the boundary. The same procedure is done for the additively weighted VT. 

 



      
Figure 1: Power VT with 2 generators          Figure 2: Additively weighted VT with 2 generators 

  

We note that the partition of the plane in the power VT is linear, while the partition of the plane in the 

additively weighted VT is curved. The power VT distance from point p to the generator pi is calculated 

using D (pi, wi; p) = [ || p-pi || 2 ] –wi2. The formula then simplifies to the linear function D (pi, wi; 

p) = [ (xp-xpi) 2 + (yp-ypi) 2 ] –wi2; this linear function is what causes the boundary line in the plane 

to be linear. The additively weighted VT boundary is curved due to the presence of the square root in the 

distance formula D (pi, wi; p) = [ || p-pi || ] –wi. We can also see differences in the overlapping 

region. Similarly, each circle’s Voronoi region can account for some area in the overlap; however, the 

additively weighted VT concludes that a majority of the overlap region to belongs to the smaller radius 

circle, whereas in the in the power VT the circle with a greater radius accounts for a majority of the 

overlap.  

To further understand the behavior of these two types of VTs with a greater number of generators, we 

extended our MATLAB script to create power and additively weighted VTs for “n” given generators. We 

created examples using generators pn, where n=5: p1 = (0.25, 0.15), p2 = (0.45, 0.35), p3 = 
(0.5, 0.75), p4 = (1.25, 1.5), p5 = (2.25, 2.75) with corresponding weights w1=0.25, w2=0.5, 
w3=0.3, w4=0.5, w5=0.25.  



      

Figure 3: Power VT with n=5 generators          Figure 4: Additively weighted VT with n-5 generators 

 

At this point, we knew how to create the types of VTs implemented in Voro++ and Voroprot; our next 

step was to make sure that our MATLAB-produced VTs were accurate. To check the accuracy of our 

code we needed to compare our results to the results of Matlab’s Voronoi command on the same points. 

MATLAB’s Voronoi command creates an exact Euclidean Voronoi tessellation, meaning the plane is 

partitioned using the distance formula D (pi, wi; p) = || p-pi || where p is any point and pi is a 

generator. We modified our code by changing the power and additively weighted distance formulas to the 

Euclidian distance formula || p-pi || and assigning the same weight, wi=0.25, to all the generators. 

       

Figure 5: Euclidian VT with weight = 0.25            Figure 6: MATLAB’s Voronoi command on same points 

 



 

Figure 7: Figures 5 and 6 overlaid in the same plot  

As shown by Figure 7, the partitions of the plane are the same shape for each Voronoi region. The 

resolution of our code improves to more accurately match MATLAB’s rendition as we decrease the step 

size of our graph. Our understanding and calculations for power VTs and additively weighted VTs 

derived from the construction and application of our code now can be used to analyze greater structures in 

Voro++ and Voroprot. 

 

  



RESULTS: VISUALIZATION IN VORO++ AND VMD  

Once we were able to visualize a smaller sample of power VT and additively weighted VT, we could 

better apply our knowledge to large-scale visualizations in Voro++ and VMD. Voro++, a C++ library that 

carries out three-dimensional VT computations, can be used to both calculate and visualize three-

dimensional containers of both non-weighted (Euclidian) cells and power or radical cells. VMD, a more 

high-powered visualization program, can take a fully compiled PDB file and display the protein structure 

as layers, which prove vital to visualizing nearest neighbor calculations—calculations that can differ 

based on the type of tessellation method that we employ. 

 

After completing our code for both 2 and n generators, we were able to see our power Voronoi 

tessellation methods come into play using Voro++.  It was exciting to realize how our two-dimensional 

tessellation algorithms could potentially be applied in a three-dimensional setting. Of course the Voro++ 

library does not use our exact algorithm for mapping a power tessellation, but we were able to see the 

linear tessellations for each atom, rather than any sort of spherical shape that might appear using an 

additively weighted tessellation computation. 

 

Voro++’s radical.cc compares two three-dimensional cubes packed with atoms. One cube does not take 

the atom’s radius as input and therefore computes a normal Voronoi tessellation based on Euclidian 

distance; the other cube does utilize the atom’s radius and computes a radical Voronoi tessellation based 

on the power distance formula (Rycroft). 

 

While we already had a file to create the normal container, input_VORO, which provided us with the 

atom ID and its x, y and z coordinates, we needed a file that also had each atom’s radius appended. 

Creating this file was a two-step process. First, given a file that matched an atom type with its radius, we 

needed to amend this file because the atom type ascii did not directly match the ascii from the PDB. After 

editing this file, Valeri Alexiv created a Python script that would strip the atom ID (in this case, the line 

number of the atom) its x, y and z coordinates from the PDB and then attach the matching radius from the 

radius file, based on the atom’s type. The resulting file, weighted_VORO, could be used for generating 

the radical.cc radical container. 

 

Compiling and executing radical.cc with these two input files generated the two desired containers, 

rendered below with GNUplot. A side-by-side comparison of a small subsection of these two containers 

showed little difference in the two plots: 



  
Figures 8 and 9: GNUplot of C2_29 x, y, and z coordinates, with weights appended to Figure 6; 
subsection: x: 1 to 10; y: 1 to 10; z: 1 to 15; number of blocks: x = 5; y = 5; z = 5. 

 

However, an overlay of the two subsections showed slight differences in the tessellations: 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: GNUplot overlay of Figures 8 (red) and 9 (green) 
subsection: x: 1 to 10; y: 1 to 10; z: 1 to 15 
number of blocks: x = 5; y = 5; z = 5 



Differences occur where red is visible through green, showing the slight differences between normal and 

radical tessellation computations. As we travel out from the subsection, we can assume that there will still 

be differences in these tessellations. This visualization helps draw the conclusion that our results will 

most likely vary depending on the tessellation method we use to divide a container. We will discuss this 

further in our “Conclusions” section. 

 

Using the Voro++ calculations on the C2_29 PDB, we generated a weighted PDB file and imported it into 

VMD. From the provided data in C2_29_weighted_VT, we first uploaded protein.pdb, the weighted 

C2_29 protein, into VMD. Next, we uploaded POPCHOLSOL_1.pdb, the first lipid shell of the protein. 

We selected a color, blue, to identify this lipid shell. We continued to upload the remaining eight lipid 

shells and color-labeled each one to distinguish each shell. The image below shows the final image 

produced by VMD once the protein and all nine lipid shells were uploaded.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11: VMD rendering of protein and 
surrounding nine lipid shells 

 

 

 

 

We were also given the interfacial water molecules for the C2_29 protein. We similarly modeled the 

interfacial water molecules in VMD. We first uploaded protein.pdb; however, this time we uploaded 

SOL_1neigh.pdb, the first solvent shell adjacent to the protein. Next, we uploaded the second solvent 

shell, SOL_2neigh.pdb, the solvent neighboring the first lipid shell. The third solvent shell is the 

solvent neighboring the second lipid shell, and so on. We uploaded all nine solvent shells into VMD and 



assigned an identifying color to each solvent shell that matched the first image. For example, the first 

solvent shell is adjacent to the protein; therefore, we assigned it a unique color. However, the second 

solvent shell is the solvent neighboring the first lipid shell, therefore we assigned it the same color, blue, 

as the first lipid shell. The image below shows the final image produced by VMD once all nine solvent 

shells were uploaded.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12: VMD rendering of protein and 
surrounding nine solvent shells 

 

 

 

 

 

Based on these layer computations, we were able to generate a numerical comparison in addition to a 

visual one, calculating the number of molecules of different types present in each layer, plus their average 

volume within that layer. We then used histograms to display the number of molecules in a layer that fell 

in a range of volumes. We analyzed four different types of molecues: POP, CHO, CHO_O6, and SOL. 

For the histograms, the number of atoms present in a layer is represented in the bar, while the groups of 

volumes are represented as the bins. 

It is interesting to note that while the number of POP, CHO and CHO_O6 molecules decrease in the outer 

layers (past layer 5), the number of SOL molecules continues to increase. This suggests that more 

solvents are present in the outer layers, while more of the other molecules are concentrated more closely 

around the in the inner layers. 



 

POP molecules 

  

 



CHO molecules 

   

  



CHO_O6 molecules 

   

 

  



SOL molecules 

   



CONCLUSIONS AND FURTHER RESEARCH 

Our Voro++ results showed us a quite interesting conclusion: the type of VT method we use (non-

weighted, additively weighted, power) will have an impact on the composition of nearest-neighbor layers. 

This conclusion is computationally significant due to the fact that these tessellations are what help us 

identify the nearest-neighbor shells in proximity to the central protein. If the tessellations differ greatly 

enough, there extends the possibility that one or more of the Voronoi cells could be pushed into in a 

different shell, thus comprising the shells of different sets of atoms. This composition would then be seen 

in differences in the number of atom types in a shell, average volumes of atom types in a shell, and in 

standard deviation calculations. We can further extend our research here by doing comparisons of shells 

created by power VT to shells created by additively weighted VT and analyzing their similarities and 

differences. 

 

Our VMD results showed us the reach of molecules into different lipid and solvent shells, and how this 

reach helps construct these nearest neighbor relationships. Here, too, we can further extend our research 

by comparing power and additively weighted VT results in the weighted PDB to analyze any similarities 

or differences in the composition of the lipid or solvent shells. Is one VT method better than the other? 

 

Coming into this project, we knew very little about the concepts of biophysics, much less the terminology 

used to describe it. The introduction into Voronoi tessellation theory, as well as creating our own 

algorithms to illustrate different types of tessellations and learning how to implement them in MATLAB 

and C++, truly enhanced our mathematical knowledge of this theory and helped show us how software 

might compute tessellations in similar manners. Given the chance to experiment with numerical methods 

on volumes and void spaces of proteins, we began to understand the computational applications that could 

be applied to these types of biophysical problems… and further research can hopefully make a dent in the 

many steps it will take to solve them.  
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