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Motivation

We are seeking the optimal placement of nine high schools in a
county so as to make them the most convenient for students. We
make the following assumptions:

High school students (ages 14-18) will use the schools nearest
to their homes.

The transportation cost to the students, as a whole, is
measured by the distance to the nearest school averaged over
all students in the region.

The optimal placement of schools is defined to be the one
that minimizes the total transportation cost to the students.
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Motivation

This problem is an application of the centroidal Voronoi
tessellation (CVT) concept. It turns on that the optimal placement
of the schools is at the centroids of a CVT of the city with respect
to a given density function of the student population.
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Voronoi Region

Given a set of generators z1, z2, ..., zK belonging to a set S, the
Voronoi region, Vj , corresponding to the generator zj is defined by:

Vj = {w ∈ S : d(w, zj) < d(w, zi ), i = 1, ...,K , i 6= j}

VORONOI TESSELLATION 
!  Given a set of generators {z1, z2, . . . , zK} belonging to a 

set S, the Voronoi region/subset Vj corresponding to the 
generator zj is defined by    

 

A Voronoi tessellation of 2 generators 

Georgi Voronoi 

A Voronoi tessellation of 10 generators 

distance function = Euclidean distance 
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Voronoi Tessellation (VT)

Given an open set Ω ⊆ Rn, the set {Vi}Ki=1 is called a tessellation

of Ω if Vi ∩ Vj = 0 for i 6= j and
⋃K

i=1Vi = Ω.

The set {Vi}Ki=1 is called a Voronoi tessellation or Voronoi diagram
of Ω.
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VT vs. CVT
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Center of Mass/Centroid

Given a non-negative and almost everywhere continuous density
function ρ(x) defined on Ω and given any region V ⊂ Ω, we define
its centroid or center of mass by

z =

∫
V xρ(x)dx∫
V ρ(x)dx

In particular, for each Voronoi region Vi , i = 1, ...,K we can define
its centroid zi by

zi =

∫
Vi

xρ(x)dx∫
Vi
ρ(x)dx
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Optimization Problem

CVT = solution of an optimization problem.

Energy/Cost Function Given K generators {z1, z2, ..., zK} and
associated V = {V1,V2, ...,VK}, and a density function ρ(x) on
Ω ⊆ Rn, we define the energy/cost function:

F ({zk ,Vk}Kk=1) =
∑K

k=1

∫
Vk
ρ(x)|x− zk |2dx
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Proposition

Given an integer K > 1 and a non-negative and almost everywhere
continuous density function ρ(x) defined on Ω ⊆ Rn. Let {Vi}Ki=1

denote an arbitrary subdivision of Ω into K non-overlapping,
covering subsets and let {zi}Ki=1 denote an arbitrary set of K
points in Ω.

Then, a necessary condition for F ({zi ,Vi}Ki=1) to be
minimized is that {zi ,Vi}Ki=1 define a centroidal Voronoi
tessellation of Ω.

We see that F (·) is a variance measure; we will refer to it as the
CVT energy.
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Proof

Given F ({zk ,Vk}Kk=1) =
∑K

k=1

∫
Vk
ρ(x)|x− zk |2dx,

∂F

∂zim
=

∫
Vi

ρ(x)
∂

∂zim
|x− zi |2dx

=

∫
Vi

ρ(x)2(xm − zim)(−1)dx

= −2

∫
Vi

ρ(x)(xm − zim)dx

where i = 1, ...,K and m = 1, ..., n since Ω ⊆ Rn.
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Proof

Set ∂F
∂zim

= 0 i.e.,

−2

∫
Vi

ρ(x)(xm − zim)dx = 0∫
Vi

ρ(x)xmdx =

∫
Vi

ρ(x)zimdx

zim =

∫
Vi
ρ(x)xmdx∫

Vi
ρ(x)dx

= z∗im

which is the m-th coordinate of the centroid of Vi .
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Numerical Simulation: Lloyd’s Algorithm

Given a set Ω, a positive integer K , and a density function ρ
defined on Ω,

1 select an initial set of K points {zi}Ki=1;

2 construct the Voronoi tessellation {Vi}Ki=1 of Ω associated
with the points {zi}Ki=1;

3 compute the mass centroids of the Voronoi regions {Vi}Ki=1

found in Step (2); these centroids are the new set of points
{zi}Ki=1.

4 If this new set of points meets some convergence criterion,
terminate; otherwise, return to Step (2).
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Lloyd’s Algorithm Steps
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Numerical Results

In our problem, we focused on nine individual high schools that
were to be placed in a given county. The county has an area
shaped like a unit square. The high schoolers in the county are
evenly distributed throughout the area, giving this problem a
uniform density.
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CVT Result with Uniform Density
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Numerical Results

Now, a more realistic example that is similar to ours would be that
the high schoolers are not evenly distributed, therefore there is no
uniform density.

For example, students tend to live closer to the center of the
county which is the center of the square. As a result, we want the
schools to be closer to the center which means we must use the
density function that has a higher value near the center and a
smaller value near the boundary of the county.

ρ(x) = e10d(x,∂Ω)

where d(x, ∂Ω) is the distance from the point, x, to the closest
boundary of the domain, Ω.
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CVT Result with Non-Uniform Density
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Comparison

Left: uniform CVT; Right: non-uniform CVT
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Conclusion

From this optimal location of high schools we learned that CVT
can be used for different optimization problems. Depending on a
specified density function, CVT results can reflect the underlying
distribution over a given domain.

We can also generalize CVT to solve the locational-optimization
problems of line-like and area-like generators (Okabe).
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Line-like Generators

Use line generators instead of point generators to account for the
size of the school. See the following figure (Okabe).
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Area-like Generators

To take the architecture into account (i.e.. shape of campus),
rather than using point generators, area generators can be used.
See the following figure (Okabe).
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